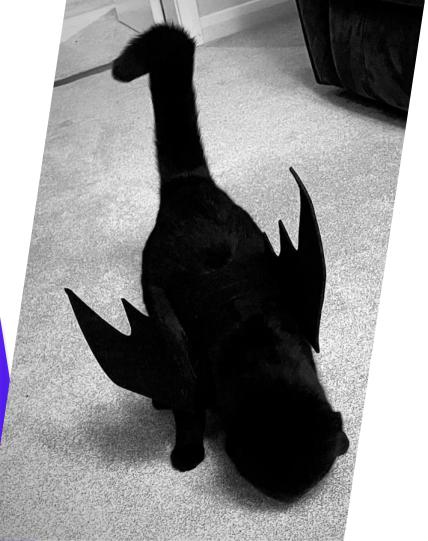

OzSec 2025

Isaiah Davis-Stober Super cool guy

What I'm going to cover

- What is firmware?
- The IoT epidemic
- How to acquire firmware samples
- Dynamic and static analysis

Who am I?


Experience:

I've been tearing apart (and sometimes putting back together) electronics since I was born, and tearing apart IoT devices for the last couple of years

Things I like:

- Misusing computers
- Cats
- Lock picking/bypassing
- Tearing apart whitelabel IoT devices

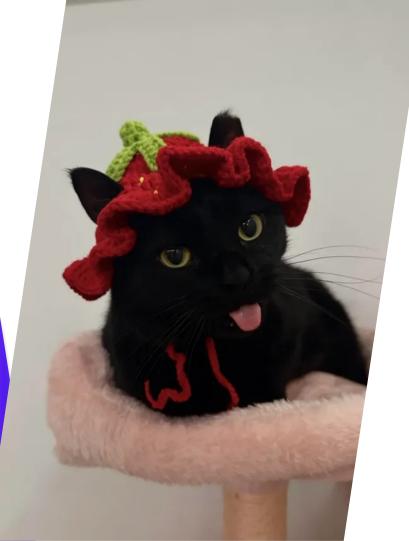
What is "loT"?

It's the Internet of Things babyyyyy

IoT Examples

PHILIPS

What is Firmware?


- Lowest level of software
- Interacts directly with the hardware

Familiar operating systems

Key differences between embedded Linux and other operating systems you are probably familiar with

Why embedded is so different

- Different chip architecture
- Less compute power
- Super low level
- Interacting directly with hardware

Why firmware so interesting

- Lowest level means if you control it you are god
- It is often neglected/ignored

Why is it a fun target?

- Low level is fun
- I don't have to fight an AV
- No one configures things correctly

IoT epidemic and why it's stupid

- Every product is the minimum viable product
- Toasters were not meant to have an internet connection

i square to god

Quick rant about "smart" devices

Privacy concerns

I just want it to work, why does it need an account?

Firmware acquisition

- Download
- Extraction

Downloading firmware

- Manufacture website
- Open S3 buckets
- Some very nice person who is distributing a copy in a legally questionable way
- FTP servers
- OTA update servers that only do useragent checks

http://fw.ajcloud.net/01.10711/gQdotgSHpnXq4JXEap4Nuw_ota_firmware_01.10711.11.01.pkg

For example: ftp://ftp2.dlink.com/PRODUCTS/DIR-882/REVA/

Bootloader

Common bootloaders

- U-Boot
- Barebox
- RedBoot
- RT-Thread

Extracting firmware

- UART
- JTAG
- Flash extraction (chip on and chip off)

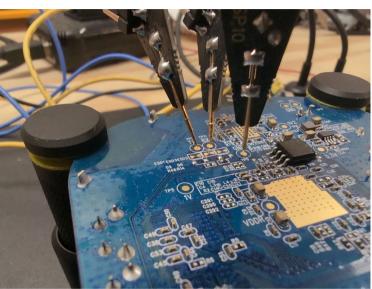
UART (Universal Asynchronous Receiver/Transmitter)

$$RX \rightarrow TX$$

TX -> RX

GND -> GND

Common baud rates:


- 115200
- 57600
- 38400
- 9600

JTAG (Joint Test Action Group)

- Debugging interface similar to UART
- More pins
- More in depth
- Not just a serial terminal


```
BusyBox v1.27.2 () built-in shell (ash)
-----run profile file-----
[0000000779][W] IOT TEST:my_really_cool_wifi_password, IOT TEST:my_really_cool_wifi_password
[0000000802] firmware version: 1.7.3
[0000000802] not update firmware
[0000000813] fua_video_capture_jpg start
mount: mounting none on /sys/kernel/debug failed: No such file or directory
root@(none):/# [0000000823] get_wifi_data waitting..., reqister_flaq 0
[0000000831][W] WAKEUP_TYPE_POWERON
[0000000882] fua_video_capture_jpg to /tmp/snap.jpg
[0000000897][I] common_i_pcm8kto16k /tmp/sound8k.pcm /tmp/sound.pcm 0K, len 28800
[0000000897] play_audio_amr_2 /tmp/sound.pcm 100.
[0000000942] fua_set_day_night_mod day_night_mod 0
[0000000942][I] device_test_video_routine
[0000000942][I] device_test_routine wait usb connect
[0000000998] fua_audio_play_set_volume 100
[0000001042] change to day mode
*** **** **** **** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** **
                * * * 0
                       ♠ [54] readcmd 11
[56]SUNXI_SPI_DEFAULT_CLK = 70000000[54]readcmd 11
ciapp start...
mount jffs2 over
[0000000492][W] ciapp(v:241) run build_2023/4/14:Apr 1 2024 06:00:08
```

Checking boot log for information OZSec 2025

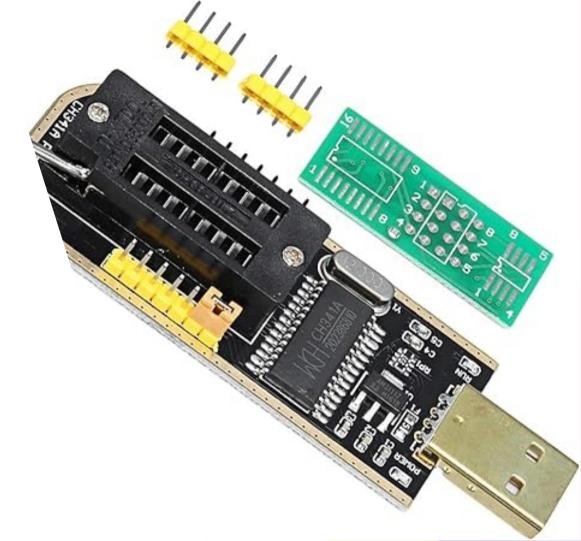

```
---RealTek(RTL8196E)at 2015.01.06-18:13-0800 v1.6 [16bit](400MHz)
bootbank is 1. bankmark FFFFFFF0
check image header return addr:05010000 bank offset:00000000
no svs signature at 00010000!
no svs signature at 00020000!
no rootfs signature at 000E0000!
no rootfs signature at 000F0000!
Jump to image start=0x80500000...
return addr = 05030000 .boot bank=1. bank mark=0xfffffff0...
decompressing kernel:
Uncompressing Linux... done, booting the kernel.
done decompressing kernel.
start address: 0x80003480
CPU revision is: 0000cd01
Determined physical RAM map:
 memory: 02000000 @ 00000000 (usable)
Zone PFN ranges:
  Normal 0x000000000 -> 0x00002000
Movable zone start PFN for each node
early node map[1] active PFN ranges
    0: 0x00000000 -> 0x00002000
Built 1 zonelists in Zone order. mobility grouping on. Total pages: 8128
Kernel command line: console=ttyS0,38400 root=/dev/mtdblock1
icache: 16kB/16B, dcache: 8kB/16B, scache: 0kB/0B
NR IROS:48
PID hash table entries: 128 (order: 7, 512 bytes)
console handover: boot [early0] -> real [ttyS0]
Dentry cache hash table entries: 4096 (order: 2, 16384 bytes)
Inode-cache hash table entries: 2048 (order: 1, 8192 bytes)
Memory: 26420k/32768k available (2566k kernel code, 6348k reserved, 459k data, 108k init, 0k highmem)
Calibrating delay loop... 398.95 BogoMIPS (lpi=1994752)
Mount-cache hash table entries: 512
net namespace: 524 bytes
NET: Registered protocol family 16
bio: create slab <bio-0> at 0
```

Flash dumping

- Types of flash
- Tools
- Methods

Types of flash interfaces

- SPI (Serial Peripheral Interface)
- QSPI (Quad Serial Peripheral Interface)
- ► I2C (Inter-Integrated Circuit)


Tools for dumping flash

- Hardware
 - Xgecu
 - CH341a

- Software
 - Flashrom
 - minipro

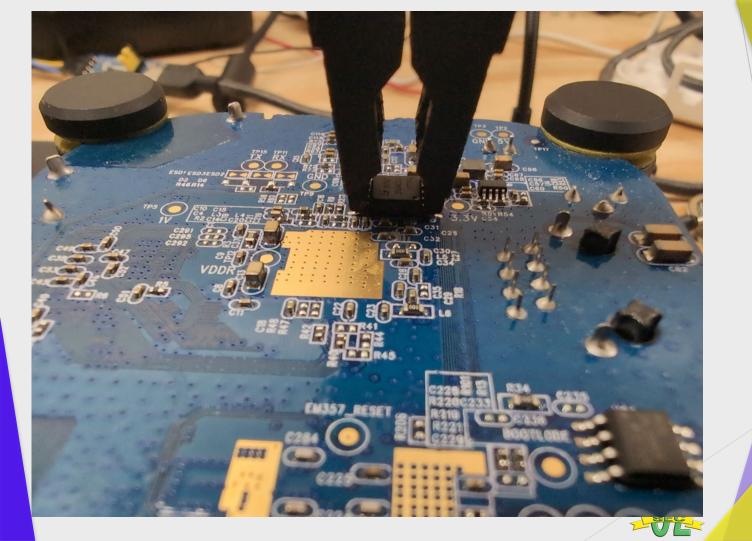
CH341a

- Easiest tool for using the CH341a programmer which is \$14 on Amazon
- Works on just about every chip I've tried*
- *dumping, it cannot always write them

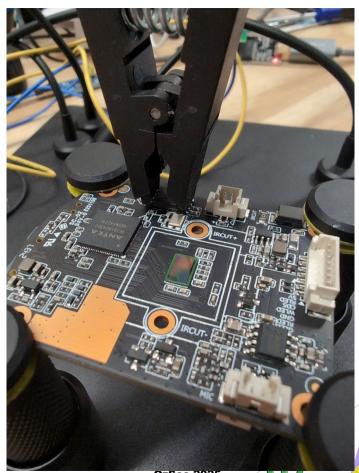
Methods

- Chip on
 - Easy
 - No Soldering
 - Difficult with larger chips
 - Can only do packages with exposed pins

- Chip off
 - Some soldering
 - Extremely consistent
 - Can do much larger chips
 - Can do BGA packages


(This is a BGA package)

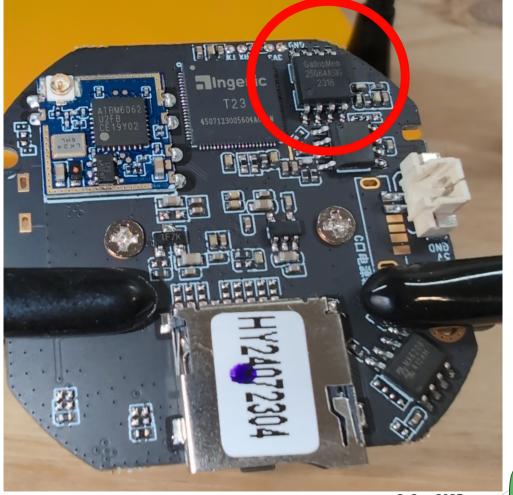
OzSec 2025


Chip on flash dumping

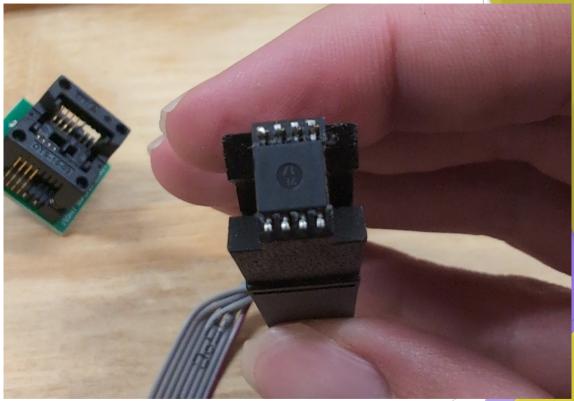
Dumping the firmware straight off of the flash module, without taking it off the board

- SOP8 clip
- CH341a and flashrom

OzSec 2025


Chip off flash dumping

- Adapter for whatever package you are dumping
- Minor soldering skills



Using Flashrom

Amazing for SPI flash

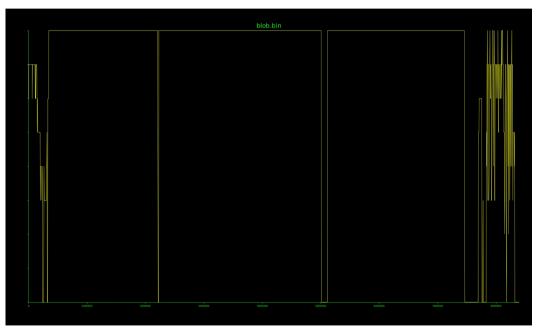
XGecu

Amazing for everything else

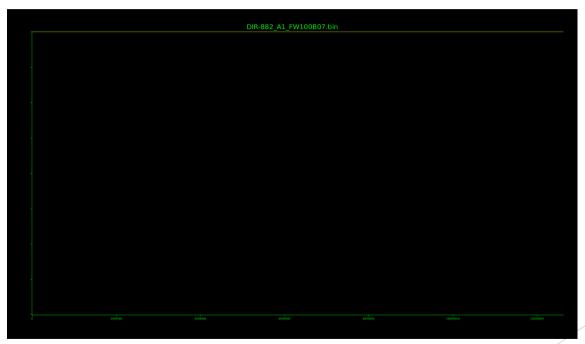
Main use

Analyzing firmware

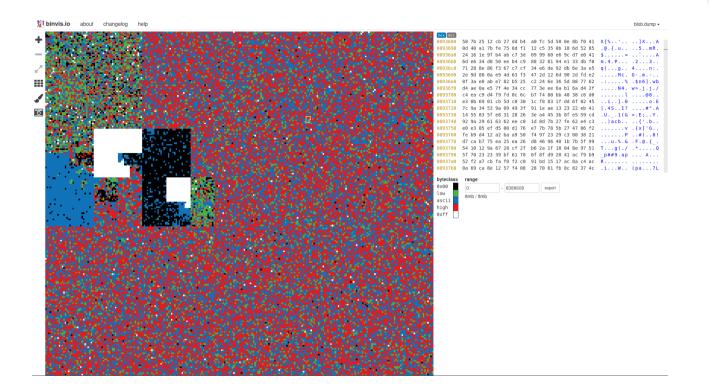
- Static vs dynamic analysis
- Common embedded systems filesystems


Checking if the dump is encrypted

- Check entropy with binwalk
- Checking what different parts of the file look like with binvis.io


Binwalk -E

Probably not encrypted



Binwalk -E

Almost certainly encrypted

binvis.io

Static analysis

- Binwalk
- Strings
- Ghidra
- xxd

FACT (Firmware Analysis and Comparison Toolkit)

Determining the type of system you're working with

- CPU architecture
 - MIPS
 - ARM
- What the firmware might be based on
 - Linux
 - FreeRTOS
 - Something else

Extracting the filesystems and directory structure

	/home/neko/firmware/s	/home/neko/firmware/sengled/extractions/blob.bin			
ECIMAL	HEXADECIMAL	DESCRIPTION			
896	0x1320	dictionary size: 838860 size: 18576 bytes, unco	LZMA compressed data, properties: 0x5D, dictionary size: 8388608 bytes, compressed size: 18576 bytes, uncompressed size: 60912 bytes		
5552	0×10010		total size: 129090 bytes		
06872	0x32818	LZMA compressed data, p dictionary size: 838860 size: 920470 bytes, unc	LZMA compressed data, properties: 0x5D, dictionary size: 8388608 bytes, compressed size: 920470 bytes, uncompressed size: 3207476 bytes		
	0×130000	SquashFS file system, little endian, version: 4.0, compression: lzma, inode count: 518, block size: 131072, image size: 1770878 bytes, created: 2038-01-29 01:48:48			
259856 801176	0x410010 0x432818	bzip2 compressed data, LZMA compressed data, p dictionary size: 838860			
			ompressed size: 3207476		
139488	0x530000	SquashFS file system, l	inode count: 518, block e: 1770878 bytes,		
e] Extraction of brip -] Extraction of lama -] Extraction of squa -] Extraction of brip -] Extraction of lama -] Extraction of squa	n data at offset 0x1320 completed s 22 data at offset 0x10010 completed 3 data at offset 0x32818 completed 3 data at offset 0x430000 completed 32 data at offset 0x410010 completed 4 data at offset 0x432818 completed 3 data at offset 0x432818 completed 4 data at offset 0x432818 completed 5 data at offset 0x530000 completed 5 data at offset 0x530000 completed	successfully successfully eted successfully d successfully successfully eted successfully			

Common File systems

Read only

SquashFS

Writeable

JFFS2 (Journaling Flash File System v2)

Combining them

OverlayFS

Extracting those common filesystems

SquashFS

- UnsquashFS
- Sasquatch (patch for unsquashfs)

JFFS2

Jefferson

Directory layout

- exa -T
- ► Is -R

```
udev.conf
pseudo init
 — ld-musl-armhf.so.1 -> libc.so
 - libc.so
   libacc s.so.1
   libstdc++.so.6 -> libstdc++.so.6.0.22
   libstdc++.so.6.0.22
  libstdc++.so.6.0.22-gdb.py
  extsd
  exUDISK
 - SDCARD
 - sdcard
pseudo init
rdinit -> pseudo init
run usb adb
  hwclock -> ../bin/busybox
  ifconfig -> ../bin/busybox
   init -> ../bin/busybox
```


Determining how the filesystems are mounted

- fstab
- inittab
- Whatever other init script they are using

```
File: inittab.sh
::sysinit:/sbin/swapoff -a
::sysinit:/bin/mkdir -p /dev/pts
::sysinit:/bin/mkdir -p /dev/shm
::sysinit:/bin/mount -a
::sysinit:/bin/hostname -F /etc/hostname
::sysinit:/etc/init.d/rcS
console::respawn:/sbin/getty -L console 115200 vt100 # GENERIC SERIAL
::shutdown:/bin/umount -a -r
```


Locating files

- grep
- find
- rg (ripgrep)
- exa -T
- Guessing

Getting the BusyBox Version

strings -n 10 busybox | grep "BusyBox"

```
BusyBox v1.27.2 ()
syslogd started: BusyBox v1.27.2
```


Looking for configuration files

- .conf
- .ini

```
(11:17:12 on main ** **) --> find . -type f -name "*.conf"
./etc/lld2d.conf
./etc/host.conf
./etc/ushare.conf
./etc/wscd.conf
./etc/boa/boa.conf
./etc/boa/boa.conf
./etc/vsftpd.conf
./etc/samba/smb.conf
```

Finding misconfigurations in said conf files

- It helps to be somewhat familiar with the default configuration file for the service (if possible)
- Just read it
- Not every misconfiguration is actually exploitable or useful

Locating custom utilities and scripts

A basic understand of Linux and common utilities goes a long way here in not wasting your time

First, BusyBox

- A useful utility for small embedded Linux machines
- Single utility
- Does all of the things
- Swiss Army Knife of Embedded Linux
- No one updates it


```
bin
   [ -> ../../bin/busybox
  [[ -> ../../bin/busybox
  amp_shell
  awk -> ../../bin/busybox
   basename -> ../../bin/busybox
  ciapp
  ciconfig.ini
  cksum -> ../../bin/busybox
  config network.sh
  crontab -> ../../bin/busybox
  cut -> ../../bin/busybox
  dirname -> ../../bin/busybox
  du -> ../../bin/busybox
  env -> ../../bin/busybox
  expr -> ../../bin/busybox
  flock -> ../../bin/busybox
   hexdump -> ../../bin/busybox
```

Just symlink

- It's that easy
- To find custom utilities just look for executables that aren't symlinks


```
File: pseudo init
MOUNT ETC=1
MOUNT OVERLAY=0
mkfs iffs2() {
       [ -x /usr/sbin/mkfs.jffs2 ] \
         && ! [ -x /sbin/mkfs.jffs2 ] \
        && echo "Not Found /usr/sbin/mkfs.jffs2 or /sbin/mkfs.jffs2" \
    local erase block=$(/bin/cat /proc/mtd \
          /bin/grep "$(basename $1)" \
/usr/bin/awk '{print $3}')
    /bin/mkdir -p /tmp/jffs2.dir/tmp
    mkfs.jffs2 -p -e 0x${erase block} -d /tmp/jffs2.dir \
    -o /tmp/jffs2.img >/dev/null || return 1 /bin/dd if=/tmp/jffs2.img of=$1 || return 1
    /bin/rm -rf /tmp/jffs2.img /tmp/jffs2.dir
mkfs_ubifs() {
    mkfs.ubifs -x lzo -y "$1"
          etc update=0
    [ -f /etc/init.d/rc.ota-upgrade ] \
         && source /etc/init.d/ota-upgrade
    local root_dev="$(readlink /dev/by-name/rootfs_data)"
    case "S{root dev}" in
             /bin/mount -t jffs2 -o rw,sync /dev/by-name/rootfs_data /etc
             [ -e /etc/etc complete -a ! -e /etc/etc need update ] \
             [ -e /etc/etc complete -a -e /etc/etc need update ] && /bin/echo "do etc update" && etc update=:
            cp -arf /etc/ciconfig.ini /tmp/
cp -arf /etc/config_data.dat /tmp/
             cp -arf /etc/other_data.dat /tmp/
```

Checking out custom scripts

Usually as simple as reading them

Common things you might find in custom scripts

- Embedded credentials
- Possible endpoints
- OTA (Over The Air) update process
- telnetd initialization
- DropBear initialization
- Poor error handling
- Understanding of how the filesystems are setup/used
- True enlightenment

Finding hard coded credentials

- Passwd file
- Shadow file
- Keys
- Configuration files
- Custom application/script strings

```
adb profile
asound.conf
banner.failsafe
ciconfig.ini
config data.dat
device info
etc complete
fstab
init.d
   ntod
  rc.modules
inittab
mtab -> /proc/mounts
openwrt_release
openwrt_version
other data.dat
passwd
profile
— K99adbd -> ../init.d/adbd
— S80adbd -> ../init.d/adbd
resolv.conf
shadow
shells
sysctl.conf
syslog.conf
   udev.conf
```


Once you've found them

- Often hashed (but not always)
- Google the hash

```
File: shadow

root:91rMiZzGliXHM:1:0:99999:7:::
daemon:*:0:0:99999:7:::
ftp:*:0:0:99999:7:::
network:*:0:0:999999:7:::
nobody:*:0:0:999999:7:::
```

```
File: passwd

root:$1$0WlvKUDR$.yqcW5hBKyVJKCHQ4njdB/:0:0:root:/root:/bin/ash
daemon:*:1:1:daemon:/var:/bin/false
ftp:*:55:55:ftp:/home/ftp:/bin/false
network:*:101:101:network:/var:/bin/false
nobody:*:65534:65534:nobody:/var:/bin/false
```


For instance, Samba

File: smbpasswd

samba:500:E37D9D1B60CE6031F4EE5CAB3C10B45B:246D949F60611CFA928A476B3FF28B25:[U]:LCT-43D6003C:

This one is "Shirley/"

Over The Air updates

A possible attack vector if there is no signing or security efforts put into the update process

telnetd

- It's telnet, what more do you want?
- Even if it is configured it might not actually be in started automatically

```
#/usr/sbin/telnetd &
/sbin/syslogd &
428 #hardcode but fast
429 #mount_etc_hardcode
430 #set_parts_by_name_hardcode
431 #mount_usr
432
433 exec /sbin/init
```

```
/usr/sbin/telnetd &
/sbin/syslogd &
/a28 #hardcode but fast
429 #mount_etc_hardcode
430 #set_parts_by_name_hardcode
431 #mount_usr
432
433 exec /sbin/init
```


SSH

- Often Dropbear
- Often super out of date

	File: dropbear
1 2 3 4 5	config dropbear option PasswordAuth 'on' option RootPasswordAuth 'on' option Port '22' # option BannerFile '/etc/banner'

Appalling script error handling

- It's always bash
- No one ever does proper error handling in bash

Weird and wacky filesystem setups

JFFS2 and SquashFS can be layered and can be used to do some funky stuff

Usually this is just OverlayFS, but sometimes something interesting will be done to handle OTA updates or factory resets

Checking out custom utilities

- Strings
- Ghidra (or IDA if you have money like that)
- ×xd

sir put me down. i am the manager

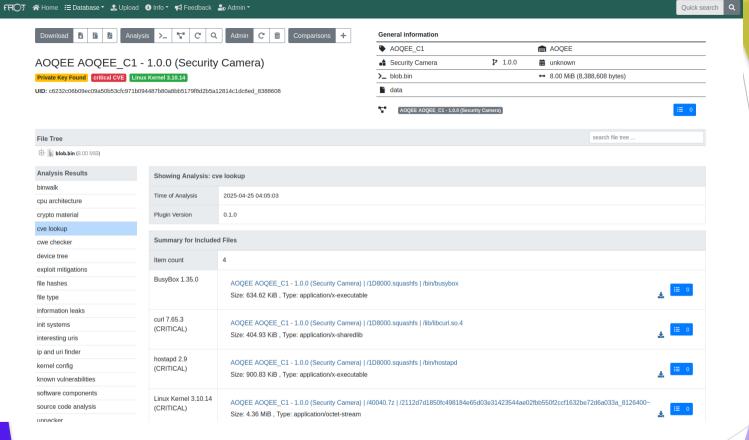

```
File: base_conf.ini

[auth]
key=11111111111111
[USERINFO]
#压力测试使用/正常填写Off即可
PressureTest=Off
#新产测
NewfactoryTest=On
#定时重启
```

└(11:24:11)─> bat ciconfig.ini		
	File: ciconfig.ini	
1	[wlan]	
2	keepalive_interval=15	
3	dtim_interval=6	
4	suspend_pm=2	
5	ap_ssid=	
1 2 3 4 5 6 7 8 9	ap_pwd=	
7		
8	[server]	
	<pre>web_server_url=https://api.v2.gdxp.com;</pre>	
10	cmd_server_ip=120.24.87.105;	
11	cmd_server_port=8888;	
12	udp_server_ip=120.24.87.105;	
13	udp_server_port=25050;	
14	stun_server_ip=8.218.91.142;	
15	stun_server_port=17051;	
16	p2p_server_ip=47.242.63.121;	
17	p2p_server_port=17051;	
18	push_server_url=http://120.24.87.105:58720;	
19	oss_from_id=9;	
20	oss_endpoint=http://oss-cn-shenzhen.aliyuncs.com;	
21	oss_bucket=sz-aiwit;	

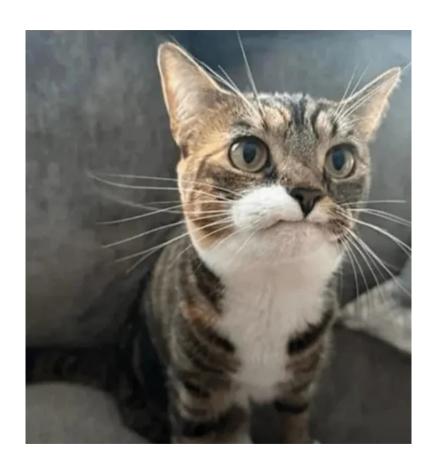
Common things to find in custom utilities

- Embedded credentials
- URLs/URIs
- ► IPs and ports
- API keys



OzSec 2025

F.A.C.T (Firmware Analysis and Comparison Toolkit)


- Great for basic static analysis of firmware samples
- You will still have to explore custom utilities and scripts yourself
- Really helpful to compare a new sample to see if you can expect something you've seen before
- https://fkie-cad.github.io/FACT_core

F.A.C.T.

Dynamic analysis

- Emulators
- Watching what the device is doing over UART/JTAG/Network

Emulators

- Emulators are great if you don't have physically access to the hardware
- They are a huge pain to setup for most IoT devices so I don't bother for most of these

Getting onto a device and seeing what's going on

- Exploring the filesystem on a live device
- Testing applications to see what they do
- Watching/modifying network traffic

UART shell

- Setup is the same as before
- We are going to use picocom to interact with this shell
- Use the credentials that you found in the copy of the firmware you already extracted
- Done

UART Shell

```
msh >dmesq
Icommittid: 507a5f56d
|halgitid: 507a5f56d
|timever : Tue, 07 May 2024 16:11:56 +0800
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c3f9cc.
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c4159c.
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c417c8.
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c419c8.
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c422c4.
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c477b0.
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c497cc.
[INF]: [rv to a7 rproc init:0080]:
                                                             [AMP INFO]Init proc ok.
[INF]: [rv to a7 rproc mmap:0186]:
                                                             [AMP INFO]map pa(0x43d23c78) to va(0x43d23c78)
[INF]: [openamp sunxi create rproc:0174]:
                                                             [AMP INFO]Wait master update resource table
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c47338.
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c48ca0.
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c48a24.
[WRN]: [do initcall level:0096]:
                                                             initcall: 0x43c48d84.
msh >[VIN ERR]used1 is 0
[VIN]set clk end
[ERR]: [hal twi sys pinctrl init:1751]:
                                                             [twi0] not support in sys config
msh >
```

Other shell options

- JTAG has some ways of getting a shell
- SSH
- Telnet

Network traffic

- ► How do we get it?
- What's in it?

Network setup

- Ralink WiFi adapter
- MitMProxy and hostapd
- Some fun routing rules and dnsmasq

Network setup

Wireshark/Tshark

Analyzing network traffic

Wireshark/Tshark

ip.src==10.10.10.147 Time Source Destination Protocol Length Info 14091 317.361606 10.10.10.147 47.89.187.69 TCP 66 59656 - 443 FACKI Seg=1 Ack=1 Win=14600 Len=0 TSval=4294941317 TSecr=931559205 47.89.187.69 14092 317.497534 10.10.10.147 TI Sv1.2 509 Client Hello 14096 317.975838 10.10.10.147 47.89.187.69 TCP 66 59656 - 443 [ACK] Seg=444 Ack=1298 Win=17496 Len=0 TSval=4294941378 TSecr=931559818 14097 318.185089 10.10.10.147 47.89.187.69 TLSv1.2 141 Client Key Exchange 14099 318.187787 10.10.10.147 47.89.187.69 TLSv1.2 72 Change Cipher Spec 14101 318.190522 10.10.10.147 47.89.187.69 TLSv1.2 111 Encrypted Handshake Message 14104 318.193258 10.10.10.147 47.89.187.69 TCP 66 59656 - 443 [ACK] Seg=570 Ack=1349 Win=17496 Len=0 TSval=4294941400 TSecr=931560037 10.10.10.147 66 59656 - 443 FIN. ACKI Seg-570 Ack-1349 Win-17496 Len-0 TSval-4294941401 TSecr-9315 14105 318,201302 47.89.187.69 TCP 10.10.10.147 47.89.187.69 TCP 66 59656 4443 [ACK] Seg=571 Ack=1350 Win=17496 Len=0 TSval=4294941401 TSecr=931560047 14110 320.417338 10.10.10.147 10.10.10.1 74 Standard query 0x00b6 A www.google.com DNS 14114 322.208444 10.10.10.147 10.10.10.1 DNS 82 Standard query 0x006d A sdc-isc-us.ajcloud.net 14116 322,210668 10.10.10.147 47.89.187.69 TCP 74 59657 - 443 [SYN] Seg=0 Win=14600 Len=0 MSS=1460 SACK PERM TSval=4294941802 TSecr=0 WS=8 14118 322.219455 10.10.10.147 47.89.187.69 TCP 66 59657 - 443 [ACK] Seg=1 Ack=1 Win=14600 Len=0 TSval=4294941802 TSecr=931564056 14119 322.269483 10.10.10.147 47.89.187.69 TLSv1.2 509 Client Hello 47.89.187.69 TCP 66 59657 - 443 [ACK] Seg=444 Ack=1298 Win=17496 Len=0 TSval=4294941845 TSecr=931564482 14122 322.641686 10.10.10.147 47.89.187.69 TLSv1.2 14124 322.876068 10.10.10.147 141 Client Key Exchange 14126 322.878523 10.10.10.147 47.89.187.69 72 Change Cipher Spec TLSv1.2 14128 322.878665 10.10.10.147 47.89.187.69 TLSv1.2 111 Encrypted Handshake Message TCP 14131 322.881453 10.10.10.147 47.89.187.69 66 59657 - 443 [ACK] Seq=570 Ack=1349 Win=17496 Len=0 TSval=4294941869 TSecr=931564725 66 59657 - 443 FFIN. ACK1 Seg=570 Ack=1349 Win=17496 Len=0 TSval=4294941869 TSecr=9315 14132 322.882327 10.10.10.147 47.89.187.69 TCP 14134 322,885479 10.10.10.147 47.89.187.69 TCP 66 59657 - 443 [ACK] Seq=571 Ack=1350 Win=17496 Len=0 TSval=4294941869 TSecr=931564728 10.10.10.1 47.89.187.69 74 59658 - 443 [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK PERM TSval=4294942270 TSecr=0 WS=8 10.10.10.147 47.89.187.69 TCP 66 59658 - 443 [ACK] Seg=1 Ack=1 Win=14600 Len=0 TSval=4294942270 TSecr=931568736 14144 326,921291 10.10.10.147 10.10.10.1 DNS 74 Standard query 0x00b6 A www.google.com 47.89.187.69 509 Client Hello 14146 326, 951510 10.10.10.147 TLSv1.2 TCP 66 59658 - 443 [ACK] Seq=444 Ack=1298 Win=17496 Len=0 TSval=4294942320 TSecr=931569236 14149 327.398268 10.10.10.147 47.89.187.69 TLSv1.2 14150 327.699991 10.10.10.147 47.89.187.69 141 Client Key Exchange 10.10.10.147 47.89.187.69 72 Change Cipher Spec 14152 327.700222 TLSv1.2 14154 327,701892 10.10.10.147 47.89.187.69 TLSv1.2 111 Encrypted Handshake Message 111 [TCP Spurious Retransmission] 59658 .. 443 [PSH, ACK] Seq=525 Ack=1298 Win=17496 Len=45 TSval=4294942345 66 59658 .. 443 [ACK] Seq=570 Ack=1349 Win=17496 Len=0 TSval=4294942351 TSecr=931569548 10.10.10.14 14159 327.705698 10.10.10.147 47.89.187.69 TCP 14160 327.705744 10.10.10.147 47.89.187.69 66 59658 - 443 FFIN, ACKI Seg=570 Ack=1349 Win=17496 Len=0 TSval=4294942351 TSecr=93156 14162 327.707559 10.10.10.147 47.89.187.69 TCP 66 59658 - 443 [ACK] Seg=571 Ack=1350 Win=17496 Len=0 TSyal=4294942351 TSecr=931569551 10.10.10.147 DNS 82 Standard query 0x006f A sdc-isc-us.aicloud.net 14167 331.711106 10.10.10.1 10.10.10.147 47.89.187.69 TCP 74 59659 - 443 [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK PERM TSval=4294942752 TSecr=0 WS=8 10.10.10.147 47.89.187.69 TCP 66 59659 - 443 [ACK] Seg=1 Ack=1 Win=14600 Len=0 TSval=4294942752 TSecr=931573558 14172 331.760954 10.10.10.147 47.89.187.69 TLSv1.2 509 Client Hello 66 59659 - 443 [ACK] Seg=444 Ack=1298 Win=17496 Len=0 TSval=4294942787 TSecr=931573911 14176 332.068536 10.10.10.147 47.89.187.69 TCP 14177 332.284154 10.10.10.147 47.89.187.69 TI Sv1.2 141 Client Key Exchange 14179 332.284373 10.10.10.147 47.89.187.69 TLSv1.2 72 Change Cipher Spec 14181 332,284437 10.10.10.147 47.89.187.69 TLSv1.2 111 Encrypted Handshake Message 14184 332,286871 10.10.10.147 47.89.187.69 TCP 66 59659 - 443 [ACK] Seg=570 Ack=1349 Win=17496 Len=0 TSval=4294942809 TSecr=931574131 66 59659 - 443 [FIN. ACK] Seg=570 Ack=1349 Win=17496 Len=0 TSval=4294942809 TSecr=9315 10.10.10.147 47.89.187.69 66 59659 - 443 [ACK] Seq=571 Ack=1350 Win=17496 Len=0 TSval=4294942810 TSecr=931574133 14187 332, 291178 10.10.10.147 47.89.187.69 TCP 14189 333,420846 10.10.10.147 10.10.10.1 DNS 74 Standard query 0x00b6 A www.google.com 14194 336,293822 10.10.10.147 10.10.10.1 DNS 82 Standard query 0x0070 A sdc-isc-us.aicloud.net 60 .. 443 [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK PERM TSval=4294943210 TSecr 14196 336.297160 10.10.10.147 47.89.187.69 14198 336.298362 10.10.10.147 47.89.187.69 TCP 66 59660 - 443 [ACK] Seg=1 Ack=1 Win=14600 Len=0 TSval=4294943210 TSecr=931578142 14199 336.343613 10.10.10.147 47.89.187.69 TLSv1.2 509 Client Hello 14202 336.695273 10.10.10.147 47.89.187.69 66 59660 - 443 [ACK] Seg=444 Ack=1298 Win=17496 Len=0 TSval=4294943250 TSecr=931578535 14203 336.895681 10.10.10.147 47.89.187.69 TLSv1.2 141 Client Key Exchange 10.10.10.147 72 Change Cipher Spec 14205 336.896925 47.89.187.69 TLSv1.2 14207 336.897996 10.10.10.147 47.89.187.69 TLSv1.2 111 Encrypted Handshake Message 14210 336.899877 10.10.10.147 47.89.187.69 TCP 66 59660 - 443 [ACK] Seg=570 Ack=1349 Win=17496 Len=0 TSval=4294943271 TSecr=931578743 66 59660 - 443 [FIN. ACK] Seq=570 Ack=1349 Win=17496 Len=0 TSval=4294943271 TSecr=9315 14211 336.901055 10.10.10.147 47.89.187.69 14213 336.902742 10.10.10.147 47.89.187.69 66 59660 - 443 [ACK] Seq=571 Ack=1350 Win=17496 Len=0 TSval=4294943271 TSecr=931578747 14217 339.924428 10.10.10.147 10.10.10.1 DNS 74 Standard guery 0x00b6 A www.google.com 00 25 22 44 65 54 90 31 4b b5 93 83 08 00 45 00 Frame 14139: 82 bytes on wire (656 bits), 82 bytes captured (656 bits) ·%"DeT · 1 K · · · · · E · Ethernet II, Src: AltoBeam b5:93:83 (90:31:4b:b5:93:83), Dst: ASRockIn 44:65:54 (00:25:22:44:65:54) 0010 00 44 9e 3d 40 00 40 11 73 c4 0a 0a 0a 93 0a 0a · D · = 0 · 0 · s · · · · · · Internet Protocol Version 4, Src: 10,10,10,147, Dst: 10,10,10,1 0a 01 a5 0f 00 35 00 30 05 5c 00 6e 01 00 00 015.0 ·\·n···· User Datagram Protocol, Src Port: 42255, Dst Port: 53 00 00 00 00 00 00 0a 73 64 63 2d 69 73 63 2d 75 ·····s dc-isc-u 9040 73 97 61 6a 63 6c 6f 75 64 93 6e 65 74 99 99 91 s ajclou d net · ·

Domain Name System (query)

SSL certificate abuse

Lack of certificate pinning

- Many devices don't have certificate pinning
- This allows you to MitM TLS connections, not just unencrypted connections

Ways IoT devices can be better secured

- Locking down the bootloader
- Stop shipping things in debug mode
- Encrypted flash
- Not shipping a MVP
- Not using really dumb password
- Verifying OTA updates
- Pinning SSL certificates

Those all cost money

Possible impacts

Initial foothold

- Routers
- ▶ IP cameras

PUT IOT DEVICES ON THEIR OWN VLAN

Botnets

- Mirai
- Bashlite
- Aisuru (apparently behind the attacks this week)
- Qbot
- Reaper

Questions?

Thanks for listening

Thank you for listening to me talk about this stuff, I hope you all enjoyed.

You can find me at www.powershell.zip or at SecKC every month

OzSec 2026

Thank you for Attending!!

Looking forward to next year already

- Pre-Register for OzSec2026
 - https://ozsecurity.org/